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DYNAMICSOF A SPLIT TORQUE HELICOPTER TRANSMISSION

Timothy L. Krantz

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

Summary

Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor trans-
missions, can save weight and be more reliable than traditional designs. This report presents the results of an

analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam

mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The
mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's

method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenome-

non of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by model-

ing total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads

and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam

mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the
coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix

used in this analysis must be considered to precisely determine the optimal tooth indexing position.
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Chapter 1

Introduction

1.0 Background

The requirements for the drive systems of helicopters and other aircraft are especially demanding. The engine

supplies the power at high speed whereas the rotor must operate at low speed. The drive system transmits the

engine power to the rotor while providing a speed reduction that, for helicopters, is typically 100 to 1. Also, the

weight, mechanical efficiency, vibration characteristics, and reliability of the drive system all have a significant

impact on the overall performance of the vehicle. The weight of the drive system is an especially important fac-
tor. As a result of analysis, experimentation, and field experience, rotorcraft transmissions have evolved to provide

a high degree of performance. However, further improvements in performance are desired. The next generation
of rotorcraft will require lighter, quieter, and more reliable drive systems to increase the vehicle payload,

improve performance and readiness, provide greater passenger comfort and safety, and lower operating costs.

The configuration of the main rotor gearbox is one of the most important characteristics of a helicopter's
drive system. The most common and conventional configuration for the final gear stage of a main rotor gearbox

is a planetary stage which has an output shaft driven by several planets. This configuration permits the division
of the transmitted torque among several planets. This division results in a gearbox that is lighter compared with

a parallel shaft gearbox in which each gear transmits the entire torque. An alternative to the conventional plane-

tary stage is a split torque stage. A split torque design is a parallel shaft arrangement that, similar to a planetary

stage, transfers power to the output shaft through multiple pinions. This arrangement shares the torque-splitting

advantage of a planetary stage, and it also can have a larger reduction ratio than is possible for a planetary

design. A large reduction ratio at the final gear stage tends to reduce the overall transmission weight. Researchers
developing the designs and technology for future rotorcraft transmissions have considered using a split torque

stage and, in some cases, have chosen designs using split torque stages as the most promising configuration

(refs. 1 to 3). One design proposed for a split torque stage helicopter application is shown in figure 1.1. White

(ref. 4) states that this split torque stage not only offers an overall weight reduction, but also promises the

following advantages when compared with a conventional planetary design:

(1) High ratio of speed reduction at final stage

(2) Reduced number of gear stages

(3) Lower energy losses
(4) Increased reliability of separate drive paths

(5) Fewer number of gears and bearings

(6) Lower noise levels from gear meshes

Thus, there is sufficient justification to pursue the development of a new generation of helicopter transmissions

that include a split torque stage.

Split torque configurations for aircraft have had limited production applications. A split torque design for a

helicopter main rotor gearbox was developed by Westland Helicopters (ref. 5), and another design is used in the
Russian Mi-26 heavy lift helicopter (ref. 6). Although not known by the name split torque, similar configura-

tions are also used in marine gearboxes (ref. 7). Many different split torque gearbox conceptual designs have

been proposed (refs. 1 to 13). An aspect of all the split torque designs that must be addressed by the designer is

the equality of the torque split. Because of manufacturing errors, one of the two power paths might carry much

more than half of the total power path unless some effective load-sharing method is employed. Since each
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powerpathmustbesizedto carrythemaximumpossibleload,theweightof thetransmissionwill beminimized
onlyif theequalityof thetorquesplitcanbeguaranteed.Onemethodto controlthisequalityis to specifyand
maintainveryprecisemanufacturingtolerances.Thisis afeasibleoptionfor today'smanufacturingcapabilities
butmaynotbetheoptimalsolution.Othermethodshavebeenproposed,includingaxiallyfloatingshafts,tor-
sionallycompliantshafts,balancingmechanisms,andlaterallycompliantbearingsupports.Thesemethodsmay
significantlyalterthevibrationpropertiesandperformanceof thegearbox.Theperformanceof a split torque
designdependsheavilyon themethodselectedto achievetorquesplitting.Thepurposeof thisworkwasto
developandapplyadynamicanalysisfor split torquetransmissions,with anemphasisonloadsharing.

1.1 Scope and Approach

The focus of this work was to study one particular split torque gearbox configuration (fig. 1.1) that was

proposed by White (ref. 4) for a helicopter main rotor transmission. The emphasis was to evaluate the system

dynamics and especially the torque sharing between the two parallel power paths. The results can be used to

gain an understanding of the characteristics of this particular split torque design. Also, the mathematical model
that was developed can be adapted to analyze and optimize other geared systems using split torque arrangements.

The remainder of this report is divided into three sections. Chapter 2 describes both the methods used to

develop a mathematical model for studying split torque gearbox arrangements and those used by others to model

geared systems. The assumptions made and methods used to develop the mathematical model are described. A
set of equations is derived to describe the loads and motions of the gearbox. Special considerations unique to

modeling split torque arrangements are discussed. The methods used to make the equations of motion non-

dimensional are described along with solution techniques for the computer simulation of gearbox motions.

Chapter 3 describes new techniques developed and used to model closed-loop test facilities, helical gear

mesh stiffnesses, and gear manufacturing errors. Both static and dynamic analytical solutions were obtained for
the mathematical model. The solutions are discussed to describe the effects of friction, bearing stiffness, and

manufacturing errors on the system's performance. Chapter 4 presents a summary and the conclusions drawn
from this work.
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Chapter 2

Mathematical Modeling

2.0 Review of Gear Dynamics Modeling

Many researchers have studied the analytical simulation of geared system dynamics. A great number of

mathematical models, analytical methods, and computer codes have been developed. A representative sampling
of these methods can be found in references 14 to 25. The proper approach and the complexity of the mathe-

matical model depend on both the characteristics of the system being simulated and on the phenomena being

investigated.

A representative model used to study gear dynamics (fig. 2.1) consists of two rigidly mounted disks. The

rotational displacements of these two disks are coupled by three elements located along a line tangent to both
disks. These three, a spring, a damper, and a displacement element, are used to model the meshing gear teeth.

Much work has been done to study how to assign the proper characteristics to these three elements to simulate

either a typical or a particular pair of gears (e.g., refs. 26 to 28). The spring stores potential energy. Most
researchers use a time-varying function to defme the spring stiffness. The function approximates the stiffness

change that occurs when the number of gear teeth in contact changes as the gears rotate. The damper dissipates
energy and is often defined as a proportional damper. Therefore, its characteristics change with time since it is

proportional to the time-varying mesh stiffness. The displacement element can be thought of as a massless, rigid

link whose length changes as a function of the angular positions of the pinion and gear. It is included in the
model for simulating the phenomenon of transmission error and is often defined as a function of time.

A pair of gears with infinitely rigid teeth and perfect involute profiles transmits exactly uniform angular
motion. Any real gear pair deviates from transmitting uniform angular motion, and this deviation is called the

dynamic transmission error. A real gear pair deviates from transmitting uniform motion because of the compli-

ance of the gear teeth, effects of inertia, and deviations of the actual contacting surfaces of the loaded teeth from

conjugate surfaces. These deviations can include intentional profile modifications, manufacturing errors, and
deflections of the gear body and supports. Considered the main source of vibration excitation in many geared

systems, the loaded static transmission error is the error of a loaded gear pair rotating at a very slow speed and,
therefore, rotating with no inertia effects. The relative contributions of the various components of the loaded

static transmission error (i.e., varying stiffness, manufacturing errors, support deflection) depend on the gear

design, tooth profile modifications, the manufacturing quality, the torque level being transmitted, and the mechanical

properties of other system components. Similarly, defining the stiffness, damping, and displacement elements of

a gear mesh model depends on the system and the phenomena being studied. For example, some researchers
(refs. 23 and 24) have used a constant mesh stiffness and an appropriate definition of the displacement element

and were able to successfully simulate the motions of real systems. However, this method may not be appropri-

ate for all gear systems and analyses.

Gear pairs are only components of a larger mechanical system. Input and output inertias connected to the

gears through torsionally compliant shafts are often included in gear dynamics models. For many real systems
that have relatively compliant shafts and bearing mounts, the torsional and lateral motions are strongly coupled.

To simulate this phenomenon, the lateral stiffness of the gear mounts must be included in the model. Gear systems

with multiple stages (ref. 16) and planetary arrangements (refs. 29 to 32) have also been modeled and studied.

A recent study of a split torque helicopter transmission is that of D. Hochmann, D. Houser, and J. Thomas

(ref. 33). They analyzed the load distribution of spur and double helical gear pairs used in a split torque helicopter



transmission.Theysuggestedthat,by alteringthegeartoothprofilemodificationsandby staggeringthephasing
of thedoublehelicalgearmeshusedin thedesign,the loadedstatictransmissionerrorcouldbe reducedwithout
seriouslydegradingloaddistributionon thegearteeth.

Anotheraspectof splittorqueconfigurations that has not been rigorously studied is the overall dynamic

behavior. A special characteristic of split torque drivetrains is the use of some method to guarantee that the

power be split evenly between the parallel paths. Several different methods have been proposed (refs. 1 to 13).

Rashidi and Krantz (ref. 34) developed a mathematical model to study these power-splitting or load-sharing

methods and to study the system dynamics of the resulting design. One of the main objectives of this work was

to apply the mathematical model to simulate the motions and loads of the split torque test rig at the NASA
Lewis Research Center. The remainder of this chapter describes the analytical method and solution techniques.

The application of the model is described in chapter 3.

2.1 Description of the Design

The transmission design under study, a cooperative effort of the U.S. Army and the NASA Lewis Research

Center, is a split torque gearbox proposed and developed by G. White (ref. 4) under an Army-NASA contract to

approximate the power requirement and match the speed reduction requirement of a version of the U.S. Army's

OH-58 helicopter main rotor transmission. The final two gear stages of the split torque test gearbox are shown

in figure 2.2. This design relies on the positioning of helical gears by a self-adjusting mechanism to obtain load

sharing. A main rotor transmission using this concept was projected to be 25 percent lighter than a conventional

design using a planetary output stage.

A split torque test gearbox using this design was built to research split torque concepts. The rated input

power to the test gearbox is 373 kW (500 hp) at 8780 rpm. The input power is carried through the input helical

pinion and is split between two helical gears at the first reduction stage. The power is combined at the second
and final reduction stage. Two spur pinions drive the output bull gear at 347.5 rpm. Thrust loads are produced
at each of the two helical meshes. These loads are reacted through a pivoted balance beam. The beam acts to

balance the power carried by each shaft by coupling the axial positions of the two gear/pinion assemblies. The

concept of this design is that the thrust loads act to adjust the axial positions of the two gear/pinion assemblies

such that the power is split evenly between the two power paths.

One of the main objectives of this work was to develop a mathematical model that could be used to identify

and study the effect of design parameters on the overall dynamic behavior of the system. For example, the angles

between the centerlines of the gears (identified in fig. 2.3) were considered a possible significant parameter.

These angles influence the stiffness properties of the system and, for a given set of gears, define the relative

phasing of the time-varying mesh stiffnesses. It was also desirable to study the effect of a subcomponent's

mechanical properties on the system performance; thus, the analytical method was chosen and applied with these

objectives in mind. The following important properties that can be simulated by the model are categorized as

(1) Microgeometric parameters such as tooth profile geometry, shaft hub eccentricities, and tooth spacing
and lead errors

(2) Macrogeometric parameters such as gear mesh pitch and pressure angles, the helix angle of the helical

mesh, and shaft and bearing locations

(3) Component material properties and bulk dimensions that define the inertia, stiffness, and dampening

properties of the components

(4) Type and geometry of the bearings that support the gear shafts



2.2 Analytical Model

The split torque transmission design shown in figure 2.2 was modeled by a set of inertia, stiffness, damping,

and displacement elements. The analytical model is shown in figure 2.4 with the gear/pinion assemblies termed

as compound gears. Along with the inertia and stiffness elements shown, the model also includes a damping

element parallel to each stiffness element, an input inertia, and an output inertia. Displacement elements are also

included at the gear mesh locations as illustrated in figure 2.5.

The analytical model shown in figure 2.4 is described by 21 coordinates. The angular positions of the gears,

input and output inertias, and balance beam require nine coordinates. The axial positions of the pinion, first

compound gear, second compound gear, and balance beam require four coordinates. The translations of the four

gear shafts require another eight coordinates. Note that describing the translations of the four gear shafts with

eight coordinates implies the assumption that the shafts do not tilt. This assumption was made because the shafts

of the design are short compared with the gear diameters. By making this assumption, we avoid the need for

another eight coordinates to describe the system. To further reduce the number of coordinates required, the
moments of inertia of the helical pinion and the balance beam and the mass of the balance beam were con-

sidered negligible compared with the others in the system. Under these assumptions, the analytical model is
described by a system of 18 equations of motion. The number of equations can be reduced to 17 by eliminating

the rigid body mode of this semidef'mite system.

For this system, the equations of motion were derived by the standard Lagrange method:

O_ OB OL
+ w - __ = Qj (j = 1,2,3 ..... 18)

d dt Oqj Oqj

(1)

where L = T - V, T is the total kinetic energy, V is the total potential energy, B is the energy dissipation func-

tion, qi is the generalized coordinate, Qi is the generalized force associated with each generalized coordinate qj,
and t is the time.

In applying the method, it was assumed that the gears contact along the theoretical line of action and that all
stiffness elements were linear but, in the case of the gear meshes, were time-varying periodic functions. The

damping elements were modeled with proportional damping expressed in terms of the damping ratio 4, stiffness
K, and inertia M, as C = _"_KM. Damping in rolling element bearings was assumed negligible, and therefore

the bearings were modeled with only stiffness elements. Each bearing was described with a 2-by-2 stiffness

matrix to include cross-coupling effects at the bearings.

The kinetic energy of this system is formulated as

m M "21 _ JqJ (j = 1,2,3 ..... 18) (2)T= 2

The energy dissipation function of this system is formulated as

1 .2
B = ._. _ qqJ (J = 1,2,3 ..... 18)

(3)
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Thepotentialenergyof this system was categorized as four groups, The first is the stored potential energy
due to the distortion of the gear teeth. The equation describing this energy is most conveniently written by

choosing a coordinate system with one coordinate parallel to the line of action. Therefore, to describe this stored

energy, two coordinate systems were defined for each gear as shown in figure 2.5. The energy stored at a

particular mesh is first expressed in the coordinate systems parallel to the line of action. Then, one of the two

coordinate systems at each gear was chosen as the global system (i.e., the one in which the equations of motion

were to be written). The second system was labeled as a local system. Reference frames with the asterisk super-

script in figure 2.5 are local. The energy stored in the gear teeth was then described in only the global coordi-

mates by transforming the local coordinates via rotational coordinate transformations. These coordinate trans-

formations introduce the shaft locations of the gear train into the mathematical model as design/analysis

parameters. For example, the potential energy stored in the helical mesh of the input pinon and second

compound gear is expressed in the local coordinate system as

1 K_(t)[rp cos(l])u?p - r_ cos(lS)V_ + cos(_)Y_= (4)

- cos([3)Y2 + sin([5)Zp- sin([3)Z2 - e2h(t)]2

To do the analysis, the local coordinate Y; is transformed by

Yp* = Yp cos(ap) - Xp sin(at)
(5)

By applying relation (5) to equation (4), the potential energy can be expressed in only global coordinates as

I K2_(t)[r p cos(13)qap _ r2h cos(13)u/zb + cos(13) cos(ctp)YpV2, =

- cos(13) sin(ap)Xp - cos(13)Y 2 + sin(l])Zp - sin(13)Z2 - e2b(t)]2

(6)

The potential energies stored in the other gear meshes were derived in a similar manner.

The second potential energy group is the energy stored in the bearings as a result of shaft translations,

expressed as

1 : 1 : 1 X 2 1
Vb = -_ K=b_X, + -_ K,zb_Y, + -_ K=b2 2 + 7 Krjb:Y_

1 1 y2 1 X 2 1 :+ _ K,_bpXp: + + +2 "2 Kyybp p "2 K'xbs e "_ KrybBYB

The third group is the potential energy stored in the twisted shafts, expressed as

V = _1 K,(W1" _ WI_: + __1Ka(W:b_ Wz_):
2 2

1 1 K B{Wa Wo)2+ --Ksp(°x'J i - _lJ_ 2 +2

(7)

(8)
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The fourth group is the potential energy due to the distortion of the balance beam support and the elements

connecting the beam to the compound gear shafts, expressed as

1 i 1 + K Z:V" = _ I_,(Z,- L_,O_ - + _ Ka{Z 2 + Lb_O_ - +
(9)

By applying the Lagrange method, the system of 18 equations of motion was derived. This method was

applied with the knowledge that the equations of motion would be solved numerically using a time-marching

method. We assumed that the increment of time for the solution was small enough such that the time-varying

mesh stiffness could be considered constant during a single time step. Of course, over a large time scale, the

mesh stiffness is not constant. Therefore, after each solution step, the stiffness properties were reevaluated, and

thus the time-varying mesh characteristics were included in the model. A typical equation of motion is presented

in appendix A. The equations of motion were written with the displacement element terms %(0 appearing on the

right-hand side of the equations as parts of the generalized forcing functions Qij(0. In this study, the components
of the friction forces that oppose axial motions were included whereas all other friction forces were assumed

negligible. The generalized forcing functions were written so that sources of excitation such as gear hub-shaft

runouts, gear geometry errors, and input-output torque fluctuations could be simulated. The time-varying mesh

stiffness is a parametric excitation for the system that will cause vibrations even in the absence of generalized

forcing functions.

The equations of motion were expressed in dimensionless forms using certain characteristic parameters

inherent to the physical system. Appendix B includes a glossary of the dimensionless parameters and an

explanation of how they were included in the model.

2.3 Solution Method

The dimensionless equations of motion were integrated in time by a fifth/sixth-order Runge-Kutta method
(ref. 35). The solution step time size was selected to be no greater than 1/20 of the period of the helical gear

mesh so that the gear mesh stiffness could be considered constant over that time frame. For this maximum step

size, 16 167 solutions are required to simulate 1 revolution of the output gear. The solution of a system of

equations of motion depends, of course, on the initial conditions and on the definition of the generalized forcing
functions. The initial conditions (both positions and velocities) and forcing functions must be representative of

the physical system so that a solution represents real physical phenomena.

For gear systems with only a single reduction stage, one may define the initial conditions of the system by

an iterative method. Typically, it is assumed that the solution is periodic with the gear mesh period. An initial

condition for the dynamic solution is assumed and is usually based on a static solution for a given load

condition as a starting point. Then the equations are integrated for a time equal to the period of the gear mesh,

and the final positions and velocities are compared with the initial conditions. Because the solution is assumed

periodic, the initial and final conditions should be equal within some small tolerance. If they are not within

tolerance, then a new set of initial conditions for the next iteration are calculated as a weighted average of the

initial and final conditions of the previous iteration. This procedure is repeated until the proper initial conditions

are found. Although this procedure was employed successfully, it has some limitations. One is that it does not

directly allow inclusion of sources of vibration excitation except those whose frequency matches the gear mesh
frequency. For example, to study the system response to accumulative pitch errors, the proper initial conditions

for the case with no pitch errors is first found. Then it is reasoned that these initial conditions for the no-pitch-

error case must be close to the case with pitch errors, and those conditions are used as the starting condition for

the solution with pitch errors included. Another limitation is that this method cannot be applied to a multiple-
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reduction-stagesystem in which there is more than one gear mesh frequency. Attempts to analyze a multiple-

reduction-stage system were not successful (ref. 36).

To avoid these limitations, an alternate method of defining the initial conditions and forcing functions was

devised. The present study begins the solution with the initial condition such that the system has no stored

potential energy. This condition is met if all of the initial positions and velocities equal zero. Also, the net
externally applied forces must equal zero. Conceptually, this can be thought of as the system operating under no

load with all inertias rotating at a constant speed and with no vibrations. Of interest here are the motions of the

system under design load. To make the transition from zero load to full load, input and output torques were

applied as ramp functions, that is, as slowly and smoothly applied loads (shown in fig. 2.6). The torque applied

to the output inertia was in the opposite direction of that applied to the input inertia and at every instant was

equal in magnitude to the product of the input torque and the overall gear ratio. In this way, the net acceleration
of the center of mass of the system was kept equal to zero. I have found that this method of starting the solution

works well and avoids the limitations of the iterative procedure. The drawback is that a number of computations
must be done to make the transition from no load to full load. Step functions (suddenly applied loads) were also

tried to reduce the computations needed to make the transition from zero to full load, but the response of the

system included very large vibrations not realistic for any physical system. All solutions in this study used the

ramp loading function method.
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Analysis of Split

Chapter 3

Torque Gearbox Loads and Motion

3.0 Static Analysis

Although the actual dynamic loads of a gearbox are significantly different from the loads calculated by

static analysis, the results of a static analysis can still reveal the characteristics of the gearbox and provide a

baseline for a comparison with a dynamic analysis. For a static analysis of the NASA split torque gearbox

design, the simplifying assumptions of no friction and laterally rigid shafts and shaft mounts were used. The

bearing reactions calculated are given in table I. Note that, although the gearbox has symmetric geometry, the

bearing reactions of the two compound shafts are not the same. Therefore, one can anticipate that the dynamic

loads and motions of the two parallel paths will differ significantly. Also note that the sum of the bearing

reactions of each compound shaft (locations 3 and 4 for one shaft, 5 and 6 for the other shaft) is on the order of

5000 to 7000 lb. On the other hand, the thrust loads generated by the helical gears will be on the order of

200 lb. The balance mechanism for load sharing operates on the principle that the balance beam will move and

position the compound shafts in reaction to any difference in the thrust forces of the two parallel power paths.

Considering the orders of magnitude of the bearing reactions and thrust forces, one can expect that the friction

forces acting to prevent the axial motions of the compound shafts will be significant and should be included in

the dynamic analysis.

TABLE I.--RESULTS OF STATIC ANALYSIS

Ioca_ou

[Bearing forces at full design load.]

Load

kN lbf

3.57 800

4.57 1030

15.6 3520

6.05 1360

18.0 4040

14.3 3210

29.5 6640

16.2 3650

Load direction,

deg

24

17

137

176

174

164

335

335

3.1 Modeling Bearing Stiffness

The work of R. Singh and T. Lim (ref. 37) was used to calculate the bearing stiffness characteristics used

for the dynamic analysis. Their proposed bearing stiffness matrix in its most general form has 12 degrees of
freedom. The number of degrees of freedom can be reduced by making assumptions about the shafts and

mounts. Herein, to keep the total system model a reasonable size, I assumed rigid shafts and bearing mounts.
Then, for the lateral directions, the bearing stiffness was described with a 2-by-2 matrix consisting of sub-

components k,_, k.,, k_, and _x with the x-direction being parallel to the net force on the bearing. The numeric
values for the bearing stiffness matrix components depend on the bearing geometry and load and on the material

properties. Figure 3.1 shows the dependence of load on the stiffness coefficients k_ and kyy for the input pinion

ball bearing (bearing number 1 of table I).
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Oncethe bearing stiffness characteristics were calculated, two additional steps were taken to incorporate

them in the system dynamic model. The first step was to account for the effect of the operating load on the

bearing stiffness. One way to account for the load would be to calculate the bearing operating load at each time

step of the dynamic solution, based on the initial conditions for that time step. However, to simplify the

procedure and to save computing time, it was assumed that the dynamic bearing motions would be small

compared with the mean beating displacements. Therefore, the bearing stiffnesses were calculated for the static

nominal load condition, and these values were used throughout the dynamic solution. Therefore, although the

nonlinearities depicted in figure 3.1 were considered in calculating the bearing stiffness at the static load, the

nonlinearities were not included in the equations of motion of this study. The ignored effect should be small as

long as the bearing dynamic displacements about the mean displacement are small.

The second step to include the beating stiffnesses into the system model was to account for the direction of

the beating loads. The global coordinate systems that were used to describe the lateral motions of the shafts

were chosen to simplify the equations describing the stored potential energies due to distortions of the gear teeth

(fig. 2.5 and eq. (4)). Also, the potential energies stored in the bearings (eq. (7)) were written using these same

global coordinate systems. To calculate the coefficients of equation (7), the bearing stiffness matrices were
determined for local coordinate systems parallel to the static bearing loads. Also, the angles between the static

bearing loads and the global coordinate systems were determined. The bearing stiffness matrices were then

transformed to the global coordinate systems by

[K] = [A]r[K'][A]
(10)

where

[K]

[A] "r

[K']

[A]

matrix in global coordinate system

transpose of [A]

matrix in local coordinate system

rotational coordinate transformation matrix

The results of the calculations for one bearing are shown in table II.

TABLE rI.--BULL GEAR ROLLER

BEARING STIFFNESS MATRIX

Coordinate

system

Local

Global

Stiffness,

10 6 Ib/in.

161"4 6"9 l
.9 9.5

]16.4 -3.7

-3.7 4.6
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3.2 Modeling Gear Stiffness and Damping

A spring, a damper, and a displacement element are included in the mathematical model to simulate each

gear mesh. The analytical code was written assuming that the spring stiffness and displacement dements were
constant over each time step of the numeric solution but varied over larger time scales. Therefore, the gear mesh

stiffness and damping were calculated at the beginning of each time step. In this study, the gear mesh stiffness

and damping were assumed to be periodic functions of time with a fundamental period equal to that of the mesh

period for a constant pinion speed. Following is a description of the methods and assumptions used to define
these functions to model the particular configuration and design of this study.

For this study, I have assumed that the gear mesh provides only a small amount of damping. A damping

ratio _ of 0.01 was used for the proportional dampers to simulate a lightly damped system.

The time-varying characteristics of the spur gear mesh stiffness were defined by ftrst using the work of

Cornel (ref. 26) to determine the compliance of a single pair of contacting gear teeth. Cornell defined the com-

pliance along the line of action in terms of gear dimensions and material properties. The method includes tooth

bending effects, fillet and foundation effects, and deformation at the hertzian contact. Rim effects, which in
some cases can be significant (refs. 27 and 38), were not considered in this study because the design has fairly

thick rims and calculating individual tooth loads was not a part of this study. The geometric preprocessor of the

gear dynamics computer program GEARDYNMULT (refs. 30 and 31) was used to calculate a set of coefficients
via Comell's method. These coefficients define the tooth pair compliance of a single pair of contacting teeth as

a function of the position along the line of action. To calculate the gear mesh stiffness for a particular angular

position of the pinion, the position of contact along the line of action for each tooth pair in contact was calcu-
lated. The tooth pair stiffness was then calculated using the information from the output of the GEARDYNMULT
code, and the tooth pair stiffnesses for all pairs of teeth in contact were summed to calculate the total gear mesh

stiffness. This procedure was repeated for a number of angular positions to adequately determine the periodic

gear mesh stiffness. Details of the calculation method and the GEARDYNMULT computer program output are

given in appendix C. The single tooth pair compliance as a function of contact position along the line of action
is shown in figure 3.2. The mesh stiffness, including the effect of the changing number of teeth in contact, is

shown as a function of pinion position in figure 3.3. Note that the maximum stiffness is almost twice the mini-
mum stiffness. The mesh stiffness shown in this figure can be defined as a function of time by assuming a con-

stant pinion speed. A piecewise smooth function was fit to the mesh stiffness data to create a time-varying mesh

stiffness function for the split torque dynamics code.

The procedure just described was extended to define the time-varying characteristic of the helical mesh. The
method of Cornel applies directly only to spur gears. Therefore, to extend the method, the helical gears were

modeled as a number of staggered spur gears as illustrated in figure 3.4. This approximation accounts for the

stiffness effects in the transverse plane and accounts for the moving contact position along the length of the
helical tooth. The axial stiffness effects are not accounted for with this approximation. However, because the

helix angle of this design is small (6°), this ignored effect should be small. The helical gear dimensions in the

normal plane were used as input to the computer program GEARDYNMULT to determine Comell's compliance
coefficients of each spur gear slice. The face width of each slice equaled the axial face width of the gear divided

by the number of staggered spur gears. For a given angular position of the helical pinion, the number of stag-

gered spur gear elements with teeth in contact and the contact position along the lines of action were calculated.
The stiffnesses for all spur gear pairs in contact were summed to calculate the gear mesh stiffness for that posi-

tion of the pinion and then were repeated for several different angular positions. The computer code used for the

calculations and the output are given in appendix D. The results of the calculations for two different cases are

shown in figure 3.5; (a) a coarse model with 24 spur gear slices and (b) a fine model with 240 spur gear slices.
It is interesting to note that, although the stiffness variation for spur gears is nearly 2 to 1, the stiffness for the

helical gears varies by only 14 percent. The function shown in figure 3.5(b) was redefined as a function of time
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byassumingaconstantspeed for the pinion. A piecewise smooth function was fit to the mesh stiffness data to

create a time-varying mesh stiffness function for the analytical code.

A unique property of gearboxes that have multiple load paths, such as split torque and planetary designs, is

the phase relationships of the gear meshes. Consider a pinion driving two gears. If the length of the arc along

the pitch circle joining the two pitch points (fig. 3.6) is an integer multiple of the circular pitch, then both

meshes will pass through the pitch point at the same instant of time, and the mesh properties can be considered

in phase. For the design studied here, the mesh properties are out of phase as shown in figure 3.7. Although for

a given set of gears and shaft locations the mesh phase relationships are defined, the phase relationships were

included as a variable in the analytical model so that the effect of mesh phasing could be assessed indepen-

dently. The mesh phasing can be considered a design variable.

3.3 Modeling Manufacturing Errors

To simulate the dynamics of a real system, the loaded static transmission error of the analytical model
should match that of the physical system. Because the stiffness elements were defined as flexible gear teeth with

assumed perfect involute shapes under load (i.e., with proper profiles for the full load condition), the displace-

ment elements of the gear mesh model were defined to simulate the main component of the unloaded static trans-
mission error attributable to manufacturing errors. The actual errors of the gears were not known or measured,

but the manufacturing specifications were AGMA class 12 quality. Based on typical single-flank and index vari-

ation measurements, illustrated in figure 3.8, the total transmission variation often has a large component peri-

odic with the gear revolution. This component of the total transmission variation is mainly a combination of

accumulated pitch error and gear runout. In this study, the displacement element of the gear mesh was defined
as the sum of two sinusoidal functions, one function for each gear in mesh, with the period of each sinusoidal

function equal to the period of gear revolution. The amplitude of the sinusoidal functions can be varied to simu-

late different levels of gear quality. The simulated unloaded and loaded static transmission error for rigid bear-

ings, full design torque, and one set of assumed error amplitudes for one of the gear meshes are shown in figure 3.9.

Assembly error, a manufacturing error unique to split torque arrangements, was included in the model. A

split torque arrangement creates a locked loop of gearing as illustrated by the heavy line of figure 3.10. Under a

nominal light load, each of the four gear meshes in the loop will be engaged if, and only if, the splitting mesh
gear and combining mesh pinion carried on each common shaft have been assembled with the required relative

angular relationship. This condition can also be thought of as the two gears requiring a particular tooth timing

relationship. One can anticipate that because of manufacturing limitations, any real gearbox will not have the

required relationship but will have some error in the assembly. Under light load, this error will cause a gap at

one of the four gear mesh locations. The purpose of the various proposed split torque load-sharing methods is to

compensate for or minimize the effect of this gap. In this study, the assembly error was simulated by adding a

mean value to one gear's sinusoidal error function described in the preceding paragraph. Therefore, referencing

equation (4), the potential energy stored in the gear mesh was adjusted to account for the gap that exists under

no load by adding a constant term to the sinnsoidal function e2h(t) that defines the displacement element. The

numeric value of the constant term can be adjusted to simulate varying amounts of assembly error.

3.4 Modeling Friction

Although the friction forces from tooth sliding were neglected, the friction forces that tend to oppose the

axial motions of the helical gears in response to the thrust of the meshing helical teeth were included in the

model. Friction is present both at the contacting gear teeth and at the bearing supports. This friction opposes
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axial motions of the gears. The magnitude of the friction forces can be significant compared with the thrust forces,

especially if the helix angle of the mesh is small. Therefore, the friction effects were included in the analytical

model. The friction force was calculated at the beginning of each time step and was assumed constant over the small

time steps of the solution. The following procedure was used to calculate the magnitude and direction of the friction

forces. First, for each shaft carrying a helical gear, the maximum possible total friction force was calculated as

Fw._ = F_b + Fm_m (11)

where

Fb sum of magnitudes of bearing forces on shafts

coefficient of friction at bearings

Fm sum of magnitudes of tooth mesh contact forces

p_ coefficient of friction at meshing gear teeth

Second, two separate cases must be considered, one for the shaft at rest and one for the shaft in motion. The

shaft was considered at rest if the magnitude of the velocity was less than 0.00025 in./sec (the shaft velocity

was compared with this small value rather than with 0 to account for truncation and roundoff errors of the

numeric solution).

For the shaft in motion, the friction force opposes the motion and so was calculated as

Ff_ t = [sign] • Fm_ (12)

where the [sign] is -1 if velocity > 0 or is +1 if velocity < O. For the shaft at rest, the friction force is in the

direction opposite the net of all other forces and has a magnitude equal to the lesser of the net of the other

forces and the maximum possible friction force. So, for the shaft at rest, the net of the other forces was

calculated using the matrix form of the equation of motion:

F" = -([KI{Y] + [C]{_i'}) + F
(13)

where

[K]

{Y}

[c]

{Y}

Fo

relevant row of stiffness matrix

generalized displacement vector

relevant row of damping matrix

generalized velocity vector

relevant term of generalized force vector

Then, the friction force was calculated as

Ftm, = [sign]

where the [sign] is -1 if F" > 0 or is +1 if F" < 0.

• Minimum of
IF'I

Fr_

(14)
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The friction force calculated using the procedure just described was added as a constant to the generalized

force vector {F}, and then the equations of motion were integrated. The magnitude and direction of the friction

forces were recalculated at the beginning of each step of the time-marching solution.

3.5 Modeling A Closed-Loop Test Stand for Open-Loop Analysis

Although the analytical model of this study is an open-loop system, the experimental rig that was used to

test the gearbox design is part of a closed-loop system (fig. 3.11). Here, the terms "open loop" and "closed loop"
are not used in the sense of control theory but as a description of the power flow in the system. The closed-loop

system consists of nominally identical test and slave gearboxes loaded against each other. The drive motor rotates

the system at the desired speed. This closed-loop system is often used for testing gear systems because it can be

done at high power by establishing a large torque in the loop while the drive motor needs only to supply a rela-

tively small amount of power to overcome frictional losses. If the gearbox were tested in an open-loop facility,

a larger drive motor and a large power-absorbing unit would be required. Although the closed-loop system is
convenient and economical for experiments, analytical codes are written to analyze the open-loop structure of

field designs. Since it is desirable to compare the analytical results of this study to experimental data as it be-

comes available, a method for modeling the closed-loop configuration of the experimental facility was developed.

One option for analyzing the motions of the experimental test rig was to expand the analytical model to
include the inertias and stiffnesses of the slave gearbox and drive motor. This mathematical model would have

many more equations and require much effort to develop. A second option, used for this study, was to model

the closed-loop system with an open-loop model (fig. 3.12) and select numeric values for the input and output
inertias and stiffnesses of the open-loop model to best simulate the closed-loop system. I propose that one apply

these two rules to determine the numeric values:

(1) The kinetic energy of the input and output inertias of the analytical model should equal the kinetic

energy of all the physical system components that are not directly represented in the analytical model.

(2) The ratio of the input inertia to the output inertia of the analytical model should equal the ratio of the

stiffnesses of the two branches of the parallel paths to the drive motor.

The first rule matches the total kinetic energies of the analytical and the physical systems; the second rule

matches the exchange of potential and kinetic energies in the two systems. For the physical system, vibration in

the test gearbox tends to cause motion of the drive motor through both of the two parallel paths of the closed-

loop system. If one ignores inertial effects for the moment, the torque induced in each path by vibration is

proportional to the stiffnesses of that path. The larger portion of inertia is assigned to the stiffer path to match

the way potential energies are stored and imparted to the drive motor. Also, by applying the second rule, the

natural frequency of the output inertia/stiffness pair will match that of the output inertia/stiffness pair. Therefore,

in the analytical model the frequency responses of the input and output inertias to some excitation within the

test gearbox tend to be the same. This matched response is similar to the physical closed-loop system where

there is only one "group" of inertias and stiffnesses responding to the excitation.

For the test rig I studied, all the components in the loop have approximately the same stiffness relative to
the load carried; one exception was the torquemeter located between the two bull gear shafts (fig. 3.11). To

achieve good sensitivity, the torquemeter has a stiffness that is approximately 1 order of magnitude less than

that of the other components, which were designed for strength using conservative methods. As a result, approx-

imately 90 percent of the total inertia of the drive motor and slave gearbox was assigned to the input inertia,

and approximately 10 percent was assigned to the output inertia. Details of the calculations to determine the

numeric values are given in appendix E.
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3.6 Dynamic Analyses and Results

Dynamic analyses were completed for five cases representing different sets of operating conditions or

assumptions. Following is a description of the simulated conditions and the results for each case.

3.6.0 Case 1--Nominal analysis

The fn'st case investigated, herein termed the nominal conditions, used some simplifying assumptions so that

some experience with the computer code could be gained and a baseline could be established for further studies.

The following simplifying assumptions were used for case 1: no assembly error was present; Coulomb friction

forces in the directions parallel to the shaft axes were zero; and the amplitudes of the total accumulative pitch

variations of the gears were small, on the order of 0.00005 in. An analysis was conducted over the range of
dimensionless time (0 to 2300) wherein the relation between dimensionless time and dimensioned time was

T = cot (15)
P

where

T time, dimensionless

% speed of input pinion, 919.23 rad/see

t time, sec

Therefore, the 2300-dimensionless time analyzed represents about 2.5 see of operation with the gearbox

running at full rated speed. The total simulation includes 14.5 revolutions of the low-speed output shaft. The

system was loaded to full rated torque using ramp-shaped forcing functions that increased the load linearly from
zero load at time T = 0 to full load at time T = 500. The complete input data set for the computer code is given

in table TIT.

The simulated dynamic shaft torques are shown and compared with the shaft torques for ideal load sharing

under static conditions in figure 3.13. The dynamic shaft torques vary about the expected static solution. The

torques of the two compound shafts, plotted together in figure 3.13(b), show nominally good load sharing but

with significant dynamic peaks.

The simulated lateral shaft vibrations, plotted as shaft orbits for time T = 900 to 2300, for all four shafts are

shown in figure 3.14. All the bearing orbits are stable and have reasonable amplitudes. It is interesting that the

orbits of the two compound shafts are significantly smaller than either the input shaft or output shaft orbits.

The simulated axial motions of the input shaft and compound shafts are shown in figure 3.15 (the output

shaft carries only a spur gear and was assumed fixed axially). In the absence of friction, as assumed herein,

large axial motions occur. Note that the phase difference in the sinusoidal plots of the two compound shafts

indicates a rocking motion of the balance beam as it functions to balance the torque split.
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Value for

computer code

9.1923D+02

6.0000D+00

122.50D+00

138.72D+00

48.620D+00

50.200D+00

TABLE hi.--COMPUTER ANALYSIS INPUT FILE

Description

Speed, input pinion

Helix angle, input pinion
Pinion shaft angle

Number 1
Number 2

Bull gear shaft angle

rad/scc

deg

2.5000D+06 Stiffness, beam center suppor_ Ibm.
2.0500D+05 Stiffness, beam to gear shaft

0.0000D+00
35.000D+00
140.00D+(_
290.00D+00
70.000D+00
340.00D+00

-38.400D+00
163.50D+00

1.0000D-05

1.5000D-05
6.0000D-05
9.0000D-05

13.000D+06

1.2000D+05
9.0000D+06

3.6590D+00

1.2235D+00

0.94425+00
7.9754D+00

4.5000D+00
I0.240D+(_

65.000D+00

46.800D+(_

23.000D+00

12.000D+00

1030.0D+00

3510.0D+00

000.00D+00

1.0000D+05

1.0000D-02

Displacement function
phase angles

Mesh phase angles

Displacement function
amplitudes components

Shaft torsional
stiffness

Base radii

Mass

lnertias

Start time

Number of solution steps
Step size

Assembly error

Coefficient of
friction

Helical pinion

Helical gear 1
Helical gear 2
Spur pinion 1
Spur pinion 2
Bull gear

Helical mesh

Spur mesh

Helical pinion

Helical gear
Spur pinion
Bull gear

Compound

Input
ouq,_

Helical gex

Spur gear

Helical pinion
Bull gear

Input pinion shaft
Compound shafts
Bull gear shaft

Input
Helical ge_
Spur pinion

Bull gear

Output

Gear teeth

Bearings

Units

0.0000D_

0.0200D+(_
0.0050D+00

deg

deg

in.

in.-Ib/rad

in,

lb

]b-in.2

Dimensionless
time

in.

Dingaxsionless

The results shown in figures 3.13 to 3.15 indicate that the computer solutions are mathematically robust.

The ramp-shaped forcing function method for establishing the initial conditions produces a periodic solution. A

method for achieving dynamic solutions of split torque gearbox designs was demonstrated.
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3.6.1 Case2--Effect of AssemblyError in Presenceof Friction

Theeffectof assemblyerrorsandfrictiononthe performance of the split torque design was studied by com-

pleting a dynamic analysis. The analysis of case 1 was repeated except that friction forces parallel to the shaft

axes and assembly error were added. Here, it was assumed that under light load a gap was present between the

helical pinion and the helical gear of the first compound shaft. Four different simulations, using assembly error

magnitudes of 0.0000, 0.0013, 0.0026, and 0.0040 in., were completed. The 0.0040-in. magnitude of assembly

error represents the maximum that can exist and still permit assembly of the gearbox. That is, with the 0.0040-

in. assembly error at the helical gear mesh, the back side of the pinion tooth just touches a tooth on the gear.

The friction coefficients assigned were 0.005 for the bearing supports and 0.020 for the contacting gear teeth.

These values were assumed based on data reported by other researchers (refs. 39 and 40). Solutions were com-

pleted to cover 0- to 2400-dimensionless time assuming the gearbox running at full rated speed and using the

same ramp shaped loading function as used for case 1.

The predicted axial motions for the solution with friction present but no assembly errors are shown in fig-
ure 3.16. The axial motions were greatly reduced compared with those for the solution with no friction (fig. 3.15).

Once the steady-state positions are reached, there exists only a small axial motion of the input shaft while the

two compound shafts are essentially at rest. The steady-state displacement of the two compound shafts is not

equal, indicating that the balance beam has rotated. The balance beam motions both with and without friction

present and with zero assembly error are shown in figure 3.17. Without friction, there is a large, low-frequency
oscillation of the balance beam. However, with friction included in the analysis, the beam rotates toward a

steady-state position without vibration. These results show that it is important to include friction in the model to

predict the performance of this design.

The influence of assembly errors and friction on the shaft torques is significant. The predicted shaft torques

for the solution assuming an 0.0040-in. assembly error and with friction present are shown in figure 3.18. The

input and output shaft torques vary about the static solution and are essentially identical to the solution with no
friction and no assembly error (fig. 3.13). However, because of the assembly error, the compound shafts no

longer carry the same mean torque. Also, note that the frequency content of the dynamic torques of the two

compound shafts is different. This difference in frequency content is more difficult to see but is also present in

the data of figure 3.13. It is not surprising that the two compound shaft torques differ because the loading of the
two shafts is not the same, as was determined even by a simple static analysis (table II). The differences between
these two shafts were studied further and are discussed in section 3.6.4.

The influence of the assembly errors on load sharing was studied. The motion of the balance beam for four

different magnitudes of assembly error is shown in figure 3.19. The beam rotates toward a position to balance

the load sharing, but because of friction, the balancing is not exact. The significance of this phenomenon is

shown in figure 3.20 where the mean torque ratio is defined as the mean torques of the compound shafts nor-

realized to the total mean torque. For the ideal case in which each shaft carries one-half of the total power, the

mean torque ratio for each shaft would equal 50 percent. The relation between the assembly error and the mean

torque ratio is linear. The maximum mean shaft torque for the conditions assumed here is approximately 55 per-
cent of the total whereas the ideal condition is 50 percent. Figure 3.20 suggests that an assembly error of about

0.0002 in. is an optimal tooth indexing relationship because the total compliance of the two load paths, includ-

ing the coupling of lateral and rotational displacements, influences the amount of torque carried in each of the

parallel paths. The complete system stiffness represented by the stiffness matrix used in this analysis must be

considered to precisely determine the optimal tooth indexing positions.
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3.6.2 Case3--Effect of Friction Magnitude

Seven dynamic analyses were completed to study the effect of the friction coefficient on the effectiveness of

the balance beam concept. Seven analyses were completed. For each, the coefficient of friction at the beatings

and at meshing gear teeth was assumed to be equal. The coefficient of friction for the seven analyses was varied

from 0.001 to 0.050. An assembly error of 0.0040 in. at one helical mesh was used for each analysis. The

remainder of the input variables for the computer code matched those of case 1 (given in table Ill). The ramp

loading method was used, with the load increasing linearly from 0 at dimensionless time 0 to full load at
dimensionless time 500. The calculations were completed to include the dimensionless time 0 to 1600.

The steady-state portion of the solutions, from dimensionless time 700 to 1600, was used to calculate the

mean torque ratios for each analysis. The mean torque ratios are a measure of the effectiveness of the balance
beam mechanism in balancing the power split. These ratios are plotted as a function of the friction coefficient in

figure 3.21. For a friction coefficient greater than about 0.003, the balance beam is for practical purposes locked

in place by the friction forces. The mean torque ratios of 45 and 55 percent indicate the balance beam is not an
effective device for load sharing unless the friction coefficient is less than 0.003. In practice, the coefficients are

likely to be in the range 0.005 to 0.020 (refs. 39 and 40). It may be necessary to increase the helix angle of the

helical gears (from the very shallow 6 ° of the design studied in this report) to improve the load sharing of the
balance beam split torque transmission. Changing the helix angle will affect the entire transmission design,

including the load capacity. This is beyond the scope of this paper.

3.6.3 Case 4---Effect of Bearing and Tooth Stiffnesses

Calculations for four analyses were completed to study the relative contributions of bearing and tooth stiff-

nesses to the torque-sharing characteristics of the design. For all calculations, the friction coefficients used were

0.020 at the gear teeth and 0.005 at the bearings. Also, an assembly error of 0.0040 in, for the helical mesh of

the first compound shaft was used for all cases. First were two stile analyses, one assuming both the gear teeth

and beatings were rigid and a second assuming that the gear teeth were flexible but the bearings rigid. For these

two analyses, it was assumed that the balance beam did not rotate. The third was a dynamic analysis that assumed

normal gear tooth stiffnesses and very stiff beatings. The values used for the bearing stiffnesses in this analysis
method were 500 times greater than those calculated for the actual design. The fourth was a dynamic analysis

assuming flexible gear tooth and bearing stiffnesses.

The mean torque ratios were calculated for each of the four analyses just described. The resulting torque ratios

are given in table IV. In analysis 1, both bearings and gear teeth assumed rigid with an 0.0040-in. assembly error,

the code predicts that compound shaft 1 carries all the torque whereas compound shaft 2 rotates but transmits no

load. This first analysis assumes that only the compound shaft torsional deformation contributes to accommodating

the assembly error. This analysis is overly conservative in establishing a required tolerance for the assembly error.

The second analysis includes the gear tooth flexibility in the calculations. Comparing the results of analyses 1

and 2 as presented in table IV, one can infer that the gear tooth deformation does significantly contribute to

accommodating the assembly error. Analysis 2 predicts that the torque will split 90 to 10 percent between the

two load paths in the presence of an 0.0040-in. assembly error. This second analysis is also overly conservative

in establishing an assembly error tolerance.

The third analysis is dynamic. Gear teeth were assumed flexible and the bearings very stiff. The predicted

mean torque ratios using the dynamic analysis are quite different from those of the two static analyses. The

improved load sharing predicted by this dynamic analysis compared with that predicted by the static analysis is
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acombinedresultof adding some flexibility at the bearings and of including the effect of balance beam motion
in the model.

The fourth analysis is similar to the third except that the bearings were assumed flexible. Comparing the

mean torque ratios calculated by analyses 3 and 4 as presented in table IV, one can infer that the bearing
deformations contribute significantly to accommodating the assembly error. The results of this study indicate

that gear tooth and beating flexibility significantly affect the torque-sharing property of this design. Along with

shaft torsional flexibility, both should be included in the calculation for establishing a desired assembly error

tolerance for a given design. This dynamic analysis could be used to predict the mean torque ratio for a given

assembly error.

TABLE IV.---COMPARISON OF ANALYSIS METHODS

2.

3.

4.

FOR PREDICTING TORQUE RATIOS

Analysis

Static analysis

(rigid bearings and
gear teeth)

Static analysis
(rigid bearings,
flexible gear teeth)

Dynamic analysis
(very stiff bearings,
flexible gear teeth)

Dynamic analysis
(flexible bearings

and gear teeth)

Torque ratio_=

Mean shaft torque100 x
Total mean torque'

peromt

100.0

90.8

71.6

56.1

9.2

28.4

43.9

"Assembly error, 0.0040 in.

A comparison of some of the results of analyses 3 and 4 reveals some coupling of the lateral and torsional
vibrations of the system. For example, when the shaft torques for the case with very stiff bearings (fig. 3.22) are

compared with those for the case with flexible bearings (fig. 3.18), there exists a high-frequency component in

the dynamic torques of the compound shafts for the case with stiff bearings. This indicates that, depending on
the bearing stiffnesses, the lateral and torsional vibrations could be strongly coupled in this system. Also, fig-

ures 3.18 and 3.22 illustrate the contribution of bearing flexibility to improving the load sharing of this design.

The contribution of bearing flexibility to accommodating assembly error is further iUustm_d by the results

of analysis 4 as presented in figures 3.23 and 3.24 in which the dynamic gear mesh deformations are plotted.
These deformations can be considered the sum of several components (described by eq. (4)) that are also plotted

in the figures. Note that, although the assembly error (represented by the mean of the gear error component) and

the angular motions tend to cause compression of the gear mesh spring element, the lateral motion cancels the

compression by a significant amount. It is also interesting to note that the low-frequency part of the angular
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vibrationtendsto be transmitted to the lateral vibration; on the other hand, the high-frequency part of the

angular vibration is not transmitted to the lateral vibration.

3.6.4 Case 5--Effect of Total Composite Gear Error

The effect of total composite gear error on the dynamics of the system was investigated. The main compo-

nent of a typical composite gear error due to manufacturing inaccuracies was modeled in this study by defining

the displacement elements as a sinusoid function whose frequency was equal to that of the mean gear rotation

speed (i.e., shaft frequency). This simulates both runout and typical accumulated pitch error. The amplitudes of

the sinusoid functions for the dynamic analyses of both a small error (case 1, section 3.6.0) and a large error

(case 5) are listed in table V. Dynamic analyses were completed for the range of dimensionless time 0 to 1600.

TABLE V.--MAGNrrUDE OF DISPLACEMENT

ELEMENT FUNCTIONS FOR LARGE

AND SMALL GEAR ERRORS

Gear element

Helical pinion

Helical gears

Spur pinions

Spurgears

C&s¢

Small error Large error

Displacement element amplitude,

IIL

1.0xl0 -5

1.5

6.0

9.0

12.0x10 -5

15.0

14.0

2O.O

The effect of gear error on the system dynamics is significant. The dynamic torque for the compound shafts

is much greater for the large gear error case (fig. 3.25) than for the small gear error case (fig. 3.18).

To further investigate the phenomenon, the shaft torque data were transformed to the frequency domain

using the Fast Fourier Transform techniques. The mean torques were removed from the torque data before the
transforms were done. The power spectral densities of the input and compound shaft torques between 0 and

10 000 Hz are shown in figure 3.26. The main components of the input shaft torque are the shaft frequencies,

caused by the gear error excitation, and the helical mesh fundamental frequency. There are also sidebands about
the helical mesh fundamental spaced at shaft frequencies, which is common in gearbox vibration spectra. The

main components of the compound shaft torque are the shaft frequencies and the spur mesh frequency with its
harmonics. On first inspection, the frequency spectra of the two compound shafts may seem very similar although

the time domain representations look very different. However, on closer inspection, differences are also evident

in the frequency domain. Figure 3.27 shows the power spectral densities between 0 and 200 Hz. Note that, even

though both shafts are excited by the same sources, compound shaft 2 has a much greater response at its rota-

tion frequency. This response may be attributed to the differences in the mean bearing loads, which change the

bearing stiffnesses. Figure 3.28 shows the power spectral densities between 800 and 1200 Hz. The sidebands

about the spur mesh fundamental are spaced at the compound shaft frequency and are much greater for shaft 2

than for shaft 1. Again, this comparison illustrates that, although the gearbox has a symmetric geometry, the

dynamics of the two power paths are not the same.

To further investigate the effect of a large gear error on the system, the shaft orbits, gear mesh forces, and

dynamic transmission errors were calculated. A comparison of figure 3.29, showing the shaft orbits for large
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gearerrors,with figure 3.14, showing shaft orbits for small gear errors, reveals that the input shaft orbit has

grown substantially whereas the compound and output shaft orbits are relatively similar. There seems to be

some weak coupling between the lateral and torsional vibrations at the shaft frequencies.

The helical gear mesh forces are shown in figures 3.30 and 3.31. The variation of the helical mesh force

over one mesh period (figs. 3.30(a) and 3.31(a)) is about 100 lb for both load paths, and the shapes of the plots

over one mesh period are very similar. On the other hand, comparing figures 3.30(b) and 3.31(b) reveals a large

variation in the gear mesh force at the input shaft frequency for helical mesh 1 that is not present for helical
mesh 2.

The spur mesh forces are shown in figures 3.32 and 3.33. The variation of the spur mesh force over one

mesh period (figs. 3.32(a) and 3.33(a)) is about 5000 lb for mesh 1 and 3500 lb for mesh 2. Also, the shapes of

the waveforms over one mesh period are different, which may be caused by the difference in the mesh phasing

illustrated in figure 3.7. The variations in spur mesh forces over shaft frequencies (figs. 3.32(b) and 3.33(b)) are

very similar for the two load paths.

The predicted dynamic transmission errors were calculated for each pinion/gear pair by subtracting the ideal

gear angular position from the position predicted by dynamic analysis. The predicted transmission errors are
shown in figures 3.34 and 3.35. A positive number indicates that the angular position lags the position of the

ideal gear. As with the torque and gear mesh forces, there is a significant low-frequency component due to the

total composite gear error of the spur gear. The dynamic transmission errors of the two helical gears (fig. 3.34)

are very similar. For the spur gears, however, the transmission error of the first gear includes a component at

the input shaft frequency (fig. 3.35(a)) that does not appear in the transmission error of the second gear

(fig. 3.35(b)).

The results of the analyses just presented show that the frequency responses of the two power paths are

different even though they have the same geometry. The phenomenon of sidebands spaced at shaft frequencies

about gear mesh fundamental frequencies (as often seen in gearbox vibration spectra) was simulated by

modeling the gear errors as sinnsoid functions. A method for simulating the effect of accumulated pitch errors

and/or runout errors on the performance of a gearbox has been presented and demonstrated, but a correlation
between manufacturing accuracy and gearbox performance was not attempted. The magnitude of the composite

gear error excitation used in this example is likely to be larger than that which actually occurs in practice,

especially for the helical mesh. When compared with spur gears, the larger overall contact ratio of helical gears
tends to better smooth out the effects of index variation. It is not possible to investigate this concept with the
model used here because the individual tooth index errors are not modeled. Instead, the net effect is approxi-

mated by a single time-varying displacement element. A possible area of future work would be to refine the

method for directly modeling gear index errors.
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Chapter 4

Summary of Results

A dynamic analysis method for split torque transmissions was presented and applied to study the load shar-

ing and other characteristics of a split torque design. A mathematical model was developed by applying the

Lagrange method to derive a system of 18 equations of motion to describe the design. The effects of time-

varying mesh stiffness, friction, and manufacturing errors were included in the model. The equations of motion
were made nondimensional and were solved using a fifth/sixth-order Runge-Kutta method. Several studies were

completed to evaluate the design.

The following specific methods were developed and applied

(1) A method for calculating a time-varying mesh stiffness for helical gears was developed by extending

CorneU's method for spur gears. The helical gears were modeled as a set of staggered spur gears.

(2) A ramp loading method was developed and used to define the initial conditions of the set of equations

of motion.

(3) A method for analyzing a closed-loop system by using an open-loop model was developed and applied.

(4) The effects of runout and accumulated pitch errors were simulated by defining the displacement element of

the gear mesh model to be the sum of two sinusoid functions whose periods equal those of the gear rotation periods.

(5) A mathematically robust method for the dynamic analysis of split torque transmissions was developed

and demonstrated.

The following results were obtained:

1. Even though the gearbox geometry is symmetric, the loads and motions of the two power paths differ.

2. Friction must be included in the model to properly evaluate the balance beam mechanism and the per-

formance of the design.

3. For the design studied, the balance beam mechanism is not an effective device for load sharing unless the

coefficient of friction is less than 0.003.

4. The relation between the magnitude of assembly error and the resulting mean torque ratios of the two

power paths is linear.

5. The complete system stiffness as represented by the stiffness matrix used in this analysis must be

considered to precisely determine the optimal tooth indexing positions.

6. For the design studied, both gear tooth and bearing flexibility should be considered along with shaft

torsional flexibility for establishing a required tolerance for assembly errors.

7. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies, as
often occurs in real gearbox vibration spectra, was simulated by modeling the main component of typical total

composite errors as sinusoid functions.
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Appendix A

Typical Equations of Motion for the Split Torque Transmission

The system has 18 equations of motion. The equation of lateral displacement of the first compound gear Y_

is presented below:

Ml_ + {cos2(13)Ki.t + cosa(al)Kl_

+ [rp cos2(13)Kl._]2/[_ COS2(13)(KImh+ Kn.h) + K_p] + Kr/bl }Y1 - {sin(cz0cos(Cq) Kl_}Xl

- I t(rp cos2([_)KlmXrp cos2(_)sin(o_)K2mh]/[_ co$2(_XKl_ + I_) + Ksp] } Xp - {COS2(_)Klmh

- ([rp cos2(13)Kt_]{rp cos2(13)[Kl_ + cos(oOK2_])/[_ cos2(13)(Kl_h + K2_h) + K_}Yp

- {[% cos2([_)Kt_)(rp cos2(l_)Kz..h]/[_ cos2(13)(Kt._ + K2_)] + K,_}Y2 - {cos(cx,)K..,}YB

+ {cos(l_)sin(l_)K_ + [(rp cos2(13)K,_)(rp cos(13)sin(13)K,_)]/[_ cos2(13)(Kt_ + K2_) + I_]}Z_

- {[(rp cos(13)sin(13)K2_)(rp cos2(13)K2_)]/[_ cos2(l_)(K,._ + K2_) + K.p]IZ2 - {cos(13)sin(13)Kt_

+ [(rp cose(13)K,._)(rp cos([_)sin(13)(K_._ + K2_)]/[_ cose(13)(Kl.,h + K2_h) + K_]}Zp

- {[(I_)rp cos2(13)K2_]/[_ COS2(_)(Ktmh + I_) + I_} _Iai

+ {rlh cos2([3)K,._ + [(rp cos2([_)Kimh)(rprlh cos2(13)K._)]/[_ COS2(_)(Ktmh + K2m_) + K_,]}q',h

+ {[(rp cos2([3)Kl_)(rpr2h cos2([3)K2_)]/[_ cosZ(l_)(Kl_ + K2_h)

+ K_]} _Fn, + {ru COS(CXl)KIm_}_I'l,-- {rs cos(Cxl)Kl._}_Fte + Cz2_ + Cz_

= - 1[- K,_ cos(l_)+ (_ cos'(l_)K,_)/(_cos'(l_)(Kt_h+ K_) + K_)]e,.(t)

+ [(r_cos_(15)K_K_)/(_ cos_(13)(K,._+ K_h) + K_]e-a(t)- [K._ cos((x,)]e,.(t)}
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Appendix B

Dimensionless Analysis

The equations of motion are expressed in dimensionless forms using certain characteristic parameters

inherent in the geartrain system. The characteristic parameters are

F.p length, where Ev is the mean value of the displacement element function of the pinion
and helical compound gear

l/_0p time, where _p is the pinion speed

F-'pK1,_ force, where K_ is the mean value of the time-varying mesh characteristic stiffness of
the pinion compound mesh

_pKl_)rp torque, where rp is the pinion base circle radius

F_.p/rp angle

The preceding characteristic parameters were used to define the following dimensionless parameters:

ot time

Displacement/Ep linear displacement

rp/g,p angular displacement

M_02p/Ktmh inertia in linear displacement equation

Ito2p/r_Kt_ inertia in angular displacement equation

tgpC/_t_ damping of linear displacement in linear equation of motion

oapC/rpK_ damping of linear displacement in angular equation of motion

_C/rp_l_ damping of angular displacement in linear equation of motion

2--
COpC/rpK_ damping of angular displacement in angular equation of motion

K(t)/_l_ stiffness of linear displacement in linear equation of motion

K(t)/rpKt_ stiffness of linear displacement in angular equation of motion

K(t)/rpK.l_ stiffness of angular displacement in linear equation of motion

:KK(t)/rp _._ stiffness of angular displacement in angular equation of motion

Force/(EpKlm) force

Torque/(rpEp Kl_) torque

These dimensionless parameters were employed to carry out a computer simulation of the dynamics of this

geamain.
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Appendix C

Calculations to Determine Spur Mesh Stiffness

The output from the GEARDYNMULT program is presented herein. The calculations to determine spur
mesh stiffness were performed for the NASA Lewis split torque fig spur mesh. The nominal dimensions from

engineering prints were used for the calculations. The output file from GEARDYNMULT follows:

SUN-PLANET MESH

ROTATIONAL PLANE

INVOLUTE MODIFICATIONS

(ENGAGEMENT )

PINION

LOC. INV. MODIFIC. DIA. ROLL ANG.

MIN. MAX.

0.0 0.000000 0.000000

0.i 0.000000 0.000000

0.2 0.000000 0.000000

0.3 0.000000 0.000000

0.4 0.000000 0.000000

0.5 0.000000 0.000000

0.6 0.000000 0.000000

0.7 0.000000 0.000000

0.8 0.000000 0.000000

0.9 0.000000 0.000000

1.0 0.000000 0.000000

2.7000

2.6836

2.6677

2 6522

2 6373

2 6229

2 6090

2 5956

2 5827

2.5704

2.5586

26.7174

25.7954

24.8734

23.9514

23.0295

22.1074

21.1855

20.2635
19.3415

18.4195

17.4974

LOC.

GEAR

INV. MODIFIC.

MIN. MAX.

0.0 0.000000

0.i 0.000000

0.2 0.000000

0.3 0.000000

0.4 0.000000

0.5 0.000000

0.6 0.000000

0.7 0.000000

0.8 0.000000

0.9 0.000000

1.0 0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

DIA.

17.6000

17.6167

17.6334

17.6502

17.6671
17.6841

17.7011

17.7182

17.7354

17.7527

17.7700

ROLL ANG.

26.7173

26.8587

27.0002

27 1416

27 2832

27 4245

27 5659

27 7074
27 8488

27 9903

28.1316

LOC.

0.0

(DISENGAGEMENT)

PINION

INV. MODIFIC.

MIN. MAX.

0.000000 0.000000

DIA.

2.7000

ROLL ANG.

26. 7174
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0.i 0.000000 0.000000

0.2 0.000000 0.000000

0.3 0.000000 0.000000

0.4 0.000000 0.000000

0.5 0.000000 0.000000

0.6 0.000000 0.000000

0.7 0.000000 0.000000

0.8 0.000000 0.000000

0.9 0.000000 0.000000

1.0 0.000000 0.000000

2.7202

2.7411

2.7626

2.7847

2.8075

2.8309

2.8548

2.8793

2.9044

2.9300

27.8188

28.9203

30.0218

31.1233

32.2247

33.3262

34.4278

35.5292

36.6307

37.7323

GEAR

LOC. INV. MODIFIC.

MIN. MAX.

0.0 0.000000 0.000000

0.I 0.000000 0.000000

0.2 0.000000 0.000000

0.3 0.000000 0.000000

0.4 0.000000 0.000000

0.5 0.000000 0.000000

0.6 0.000000 0.000000

0.7 0.000000 0.000000

0.8 0.000000 0.000000

0.9 0.000000 0.000000

1.0 0.000000 0.000000

DIA.

17.6000

17 5802

17 5604

17 5408

17 5213

17 5019

17 4826

17 4634
17.4443

17.4253

17.4064

ROLL ANG.

26.71731

26.54831

26.37931

26.21031

26.04141

25.87241

25.70351

25.53451

25.36541

25.19651

25.02751

INPUT

NO.TEETH - SUN
NO.TEETH - PLANET

PRESSURE ANGLE (DEGREES) DRIVE SIDE

DIAMETRAL PITCH

TOOTH TIP RADIUS TOL. (INCH)

EDGE BREAK ON TOPLAND (INCH)

MACHINED BACKLASH TOL.(INCH)

ROOT RADIUS TOL. (INCH)

FACE WIDTH - SUN (INCH)

FACE WIDTH - PLANET (INCH)

YOUNGS MOD.*E-6 - SUN (LB/SQ.INCH)

YOUNGS MOD.*E-6 - PLANET (LB/SQ.INCH)

POISSONS RATIO - SUN

POISSONS RATIO - PLANET

SURFACE ROUGKNESS-MAX (AA)

OIL INLET TEMPERATURE (DEG.F)

INITIAL RPM OF RANGE

FINAL RPM OF RANGE

NUMBER OF INTERVALS

TORQUE INPUT (IN-LBS )
TOTAL INV.PROFILE MODIFICATION, ENGAGE

TOTAL INV.PROFILE MODIFICATION, DISENG

INV.PROFILE MOD.LOCATION-% OF SOE

INV.PROFILE MOD.LOCATION-% OF SOD

INV.PROFILE MOD.TOTAL TOLERANCE

+C.D.TOL. (OUT OF MESH) (INCH)

-C.D.TOL. (INTO MESH) (INCH)

CONTACT RATIO INPUT

HERTZ CONSTANT FOR COMPLIANCE

CENTER DISTANCE,THEO. (INCH)

CENTER DISTANCE,MAX. (INCH)

CENTER DISTANCE,MIN. (INCH)

CIRCULAR PITCH (INCH)

DATA

(INCH)

(INCH)

27.0000

176.0000

25.0000

i0.0000

0.0020

0.0100

0 0020

0 0050

2 6000

2 3600

30 0000
30 0000

0.3000

0.3000

25.0000

180.0000

2265.0000

2265.0000
1.0000

6960.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

159899.

10.1500

10.1500

10.1500
0.3142
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CIRCULAR BASE PITCH (INCH)

MAX.OPERATING PRESS. ANGLE (DEG) DRIVE

MIN.OPERATING PRESS. ANGLE (DEG) DRIVE

NOMINAL CONTACT RATIO AT C.D.-THEO.

MINIMUM CONTACT RATIO AT C .D.-MAX.

MATERIAL CONSTANT

CODE FOR TYPE OF OIL

0.2847

25.0000

25.0000

1.5176

1.3443

0.0528

0.0000

Calculated Data
SUN

NUMBER OF TEETH

PITCH DIAMETER

BASE CIRCLE DIA. DRIVE SIDE

TOOTH TIP DIAMETER,MAX.

TOOTH TIP DIAMETER,MIN.

EFFECTIVE TOOTH TIP DIA

ROOT DIAMETER,MAX.

ROOT DIAMETER,MIN.

TRUE INV.FORM DIA.

TOPLANDWIDTH,MIN.

ROOT FILLET RADIUS,MIN.

MACHINE BACKLASH,MAX.

MACHINE BACKLASH,MIN.

CIRCULAR TOOTH THICKNESS

MACH.CIRC.TOOTHTHKNS.MAX.

MACH.CIRC.TOOTH THKNS.MIN.

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

TIP/ROOT CLEAR.MIN AT CD MIN.(INCH)
ROLL ANGLE AT TOOTH TIP DIA. (DEG)

ROLL ANGLE (DEG)

AT ADD.INV.MODIFICATION DIA. (INCH)

ROLL ANGLE AT PITCH DIA. (DEG)

ROLL ANGLE (DEG)

AT DED.INV.MODIFICATION DIA. (INCH)

ROLLANGLE AT TIFD (DEG)

INSPECTION WIRE/BALL DIA.

MAX.MEASUREMENT OVER 2 WIRE/BALL

MIN.MEASUREMENT OVER 2 WIRE/BALL

EFFECTIVE WIDTH AT TOOTH TIP

EFFECTIVE WIDTH AT START OF FILLET

RADIUS TO BASE OF FILLET INPUT

OUTSIDE RADIUS INPUT (INCH)
FILLET RADIUS INPUT (INCH)

DAMPING RATIO INPUT

(INCH)

(INCH)

(INCH)

(INCH)

NUMBER OF PLANETS

NUMBER OF BOUNDARY CONDITION ITERATIONS

TOLERANCE FOR BOUNDARY CONDITION CONVERGENCE

EQUIVALENT MASS OF SUN GEAR

EQUIVALENT MASS OF PLANET CARRIER

EQUIVALENT MASS OF RING GEAR

EQUIVALENT MASS OF PLANET # 1

COMPLIANCE CONSTANTS

27.0000

2.7000

2.4470

2.9300

2.9260

2.9060

2.4976

2.4876

2.5586

0.0475

0.0381

0.0025

0.0005

0.1711
0.1706

0.1686

0.0162
37.7323

26.7174

2.7000

26.7175

26.7174

2.7000

17.4975

0.1650

2.9380

2.9342

2.6000

2.6000

0.0000

0.0000

0.0000

0.0000

1

2O

0.10000E-01

0.10000E+01

0.10000E+01

0.I0000E+01

0.10000E+01

SUN - PLANET

0.1379E-06 * ( 1 + -0.1229E+00 * (S/SO) + 0.5538E+00 *

+ -0.I054E+00 * (S/SO)**3 + 0.8697E-01 *

PLANET

176.0000

17.6000

15.9510

17.7700

17.7660

17.7460

17.3522

17.3423

17.4064

0.0602

0.0401

0.0025

0.0005

0.1431

0.1426

0.1406

0.0089

28.1317

26.7174

17.6000

26.7174

26.7174

17.6000

25.0276
0.1900

17.8709

17.8666

2.3600

2.3600

0.0000

0.0000

0.0000

0.0000

(S/SO)*'2

(S/SO)*'4)

C FORTRAN PROGRAM TO CALCULATE SPLIT TORQUE RIG

C TIME-VARYNG STIFFNESS FUNCTION FOR THE SPUR MESH

C
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C

C

C

DIMENSION A(8),SK(8)

DO ii J=1,495

RJ=J

X=I4.+(13.333/245.)*RJ

CLEAR ARRAYS

DO 12 K=I,8

A(K) =0.

SK(K) =0.

12 CONTINUE

C
C CALC LOCAL COORDINATE ARRAY

C

DO 13 K=I, 8

RK=K

A(K) =X- (RK-I.) "13. 333

13 CONTINUE

C

C

C

CALC SLICE STIFFNESS ARRAY

DO 14 K=I,8

IF(A(K) .LT. -9.483 ) GOTO 117

IF(A(K) .GT. 7.456 ) GOTO 117

THETA=A(K)

CALL LOA(S,THETA)

CALL COMPL(S,C)

SK(K)=I./C
117 CONTINUE

14 CONTINUE

TK=0.

C

C LOOP TO CALC MESH STIFFNESS = SUM OF SLICE STIFFNESSES

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

DO 15 K=I,8

TK=TK+SK(K)

15 CONTINUE

WRITE(9,200) J,K,TK,TKM

ii CONTINUE

200 FORMAT(I5,FI0.4,2EI4.4)

STOP

END

SUBROUTINE COMPL (S,C)

VERSION 1.0
TIM KRANTZ 2/26/92

FORTRAN SUBROUTINE TO CALCULATE TOOTH STIFFNESS

COMPLIANCE KNOWING CORNELL'S COMPLIANCE COEFFICIENTS

REVISIONS:

VERSION 1.0 TIM KRANTZ 2/26/92

REQUIRED INPUTS:
S=LOCATION ALONG LINE OF ACTION

RETURNS:
COMP = COMPLIANCE OF TOOTH PAIR
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

** NOTE: **

** i) BY SETTING VALUES OF COEFFICIENTS **
** THE SUB IS SPECIFIC FOR A **

** PARTICULAR GEAR DESIGN. **

** 2) THE SUB IS NOT INTELLIGENT ABOUT **

** THE VALUE OF S. IF YOU ASK IT **

** TO CALCULATE FOR A VALUE OF S **

** THAT REPRESENTS THE GEAR TOOTH **

** PAIR NOT IN CONTACT, IT WILL **

** FAITHFULLY CALCULATE A COMPLIANCE **

* * ANYHOW. * *

SUBROUTINE COMPL (S ,COMP )

C
C THE NEXT 5 FORTRAN STATF/4ENTS ARE SPECIFIC FOR A GIVEN DESIGN

C WHERE A,B,C,D,C0 ARE COMPLIANCE COEFFICIENTS PER CORNELL

C AND S0=LENGTH OF LINE OF ACTION OVER ANGLE OF APPROACH

C
S0=0.23084

A=0.-0. 1229
B=0.5538

C=0 .-0.1054

D=. 8697E-01

C0=0.1379E-06

X=S/S0

COMP=C0* (I+A*X+B*X*X+C*X*X*X+D*X*X*X*X)

RETURN

END

C SUBROUTINE TO CALCULATE LINE OF ACTION

C COORDINATE POSITION KNOWING THE LOCAL

C ANGULAR COORDINATE THETA.

C THIS SUBROUTINE IS FOR THE SPLIT TORQUE

C HELICAL MESH GEOMETRY IN THE TRANSVERSE PLANE.
C IT IS ASSUMED THAT BOTH S AND THETA ARE ZERO

C AT THE PITCH POINT AND NEGATIVE ON THE ANGLE OF
C APPROACH. ALSO IT IS ASSUMED THAT THETA IS IN DEGRESS

C AND IS WITHIN THE RANGE OF THE ANGLE OF APPROACH

C THROUGH ANGLE OF RECESS

C
C INPUTS : THETA IN DEGREES

C OUTPUTS : S (INCHES )

C
SUBROUTINE LOA (S, THETA)

X=THETA* 3. 14159/180.

S=0. 9448* (TAN(. 349292+X) -.364227)

RETURN

END
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Appendix D

Calculations to Determine Helical Mesh Stiffness

The output from the GEARDYNMULT program is presented herein. The calculations to determine helical

mesh stiffness were performed for the NASA Lewis split torque rig helical mesh. The gear dimensions used are

those in the normal plane and were the nominal dimensions from engineering prints. The face widths used are

1/10 of the total face width because the helical gear was f'n'st modeled as 10 staggered spur gears. The output

file from GEARDYNMULT follows:

SUN-PLANET MESH

ROTATIONAL PLANE

INVOLUTE MODIFICATIONS

(ENGAGEMENT )

PINION

LOC. INV. MODIFIC. DIA. ROLL ANG.

MIN. MAX.

0.0

0.i

0 2

0 3

0 4

0 5

0 6

0 7

0 8
0.9

1.0

0.000000 0.000000 2.0110 20.8652

0.000000 0.000000 2.0014 19.9960

0.000000 0.000000 1.9921 19.1267

0.000000 0.000000 1.9832 18.2574

0.000000 0.000000 1.9747 17.3882

0.000000 0.000000 1.9666 16.5191

0.000000 0.000000 1.9588 15.6499

0.000000 0.000000 1.9515 14.7807

0.000000 0.000000 1.9445 13.9114

0.000000 0.000000 1.9380 13.0422

0.000000 0.000000 1.9318 12.1728

LOC.

0.0

0.I

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

GEAR

INV. MODIFIC.

MIN. MAX.

0.000000

0.000000

0.000000

0.000000

0.000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

DIA. ROLL ANG.

0.000000 7.7927 20.8652

0.000000 7.8025 21.0895

0.000000 7.8125 21.3139

0.000000 7.8225 21.5380

0.000000 7.8327 21.7625

0.000000 7.8429 21.9868

0.000000 7.8532 22.2110

0.000000 7.8636 22.4353

0.000000 7.8741 22.6597

0.000000 7.8847 22._840

0.000000 7.8954 23.1083
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LOC.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

INV.
MIN.

(DISENGAGEMENT)

PINION

MODIFIC.

MAX.

0.000000

0.000000

0.000000

0.000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

DIA.

.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

2 0110

2 0235

2 0366

2 0502

2 0643

2 0790

2 0942

2.1098

2.1260

2.1426

2.1597

ROLL ANG.

20.8652

21.9495

23.0340

24.1185

25.2028

26.2872

27.3717

28.4561

29.5405

30.6250

31.7094

GEAR

LOC. INV. MODIFIC.

MIN. MAX.

DIA.

0.0

0.I
0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1.0

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

7.7927

7.7805

7.7685

7.7566

7.7449

7.7333

7.7219

7.7106

7.6995

7.6885

7.6777

INPUT DATA

NO.TEETH - SUN

NO.TEETH - PLANET

PRESSURE ANGLE (DEGREES) DRIVE SIDE

DIAMETRAL PITCH

TOOTH TIP RADIUS TOL. (INCH)

EDGE B_ ON TOPLAND (INCH)

MACHINED BACKLASH TOL.(INCH)

ROOT RADIUS TOL. (INCH)

FACE WIDTH - SUN (INCH)

FACE WIDTH - PLANET (INCH)

YOUNGS MOD.*E-6 - SUN (LB/SQ.INCH)

YOUNGS MOD.*E-6 - PLANET (LB/SQ.INCH)
POISSONS RATIO - SUN

POISSONS RATIO - PLANET

SURFACE ROUGHNESS-MAX (AA)

OIL INLET TEMPERATURE (DEG.F)
INITIAL RPM OF RANGE

FINAL RPM OF RANGE

NUMBER OF INTERVALS

TORQUE INPUT (IN-LBS)
TOTAL INV.PROFILE MODIFICATION, ENGAGE

TOTAL INV.PROFILE MODIFICATION, DISENG
INV.PROFILE MOD.LOCATION-% OF SOE

INV.PROFILE MOD.LOCATION-% OF SOD

INV.PROFILE MOD.TOTAL TOLERANCE

+C.D.TOL. (OUT OF MESH) (INCH)

(INCH)

(INCH)

ROLL ANG.

20.86521

20.58531

20.30541

20.02571

19.74571

19.46581

19.18601

18.90621

18.62631

18.34651

18.06661

32.0000
124.0000

20.0100

15.9123
0.0020

0.0100
0.0020

0.0050

0.1750

0.1500

30.0000

30.0000

0.3000

0.3000

25.0000

180.0000

2265.0000

2265.0000

1.0000

695.6001

0.0000

0.0000
0.0000

0.0000

0.0000
0.0000
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-C.D.TOL. (INTO MESH) (INCH)
CONTACTRATIOINPUT
HERTZCONSTANTFORCOMPLIANCE
CENTERDISTANCE,THEO.(INCH)
CENTERDISTANCE,MAX. (INCH)
CENTERDISTANCE,MIN. (INCH)
CIRCULAR PITCH (INCH)

CIRCULAR BASE PITCH (INCH)

MAX.OPERATING PRESS. ANGLE (DEG) DRIVE

MIN.OPERATING PRESS. ANGLE (DEG) DRIVE

NOMINAL CONTACT RATIO AT C .D.-THEO.

MINIMUM CONTACT RATIO AT C.D.-MAX.

MATERIAL CONSTANT

CODE FOR TYPE OF OIL

0.0000

0.0000

306861.

4.9019

4.9019

4.9019

0.1974

0.1855

20.0100

20.0100

1.7366

1.4258

O.0528

0.0000

Calculated Data
SUN PLANET

NUMBER OF TEETH

PITCH DIAMETER

BASE CIRCLE DIA. DRIVE SIDE

TOOTH TIP DIAMETER,MAX.

TOOTH TIP DIAMETER,MIN.

EFFECTIVE TOOTH TIP DIA

ROOT DIAMETER,MAX.

ROOT DIAMETER,MIN.

TRUE INV.FORM DIA.

TOPLAND WIDTH,MIN.

ROOT FILLET RADIUS,MIN.

MACHINE BACKLASH,MAX.

MACHINE BACKLASH,MIN.

CIRC_TOOTH THICKNESS

MACH.CIRC.TOOTH THKNS.MAX.

MACH.CIRC.TOOTH THKNS.MIN.

TIP/ROOT CLEAR.MIN AT CD MIN.

ROLL ANGLE AT TOOTH TIP DIA.

ROLL ANGLE

AT ADD.INV.MODIFICATION DIA.

ROLL ANGLE AT PITCH DIA.

ROLLANGLE

AT DED.INV.MODIFICATION DIA.

ROLL ANGLE AT TIFD

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(INCH)

(DEG)

(DEG)

(INCH)

(DEG)

(DEG)

(INCH)

(DEG)

32.0000 124.0000

2.0110 7.7927

1.8896 7.3223

2.1597 7.8954

2.1557 7.8914

2.1357 7.8714

1.8796 7.6284

1.8696 7.6184

1.9318 7.6777

0.0410 0.0493

0.0279 0.0302

0.0025 0.0025

0.0005 0.0005

0.1071 0.0903

0.1066 0.0898

0.1046 0.0878

0.0144 0.0078

31.7094 23.1083

20.8652 20.8652

2.0110 7.7927

20.8652 20.8652

20.8652 20.8652

2.0110 7.7927

12.1731 18.0666

INSPECTION WIRE/BALL DIA.
MAX.MEASUREMENT OVER 2 WIRE/BALL

MIN.MEASUREMENT OVER 2 WIRE/BALL

EFFECTIVE WIDTH AT TOOTH TIP

EFFECTIVE WIDTH AT START OF FILLET

(INCH)

(INCH)

(INCH)

0.1050 0.1150

2.1687 7.9476

2.1640 7.9423

0.1750 0.1500

0.1750 0.1500

RADIUS TO BASE OF FILLET INPUT (INCH)

OUTSIDE RADIUS INPUT (INCH)
FILLET RADIUS INPUT (INCH)

DAMPING RATIO INPUT

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

NUMBER OF PLANETS 1

NUMBER OF BOUNDARY CONDITION ITERATIONS 20

TOLERANCE FOR BOUNDARY CONDITION CONVERGENCE 0.10000E-01

EQUIVALENT MASS OF SUN GEAR

EQUIVALENT MASS OF PLANET CARRIER

EQUIVALENT MASS OF RING GEAR

EQUIVALENT MASS OF PLANET # 1

0.10000E+01

0.10000E+01

0.10000E+01

0.10000E+01

COMPLIANCE CONSTANTS
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SIN-PLANET

0.2421E-05 * ( 1 + -0.2021E+00 * (S/SO) +

+ -0.3206E-01 * (S/S0)*'3 +

0.5166E+00 * (S/S0)*'2

0.1976E+00 * (S/S0)*'4)

******* NON PLANETARY, NO CARRIER OR RING ******

C PROGRAM TO CALCULATE SPLIT TORQUE RIG

C TIME VARYING STIFFNESS FUNCTION FOR THE HELICAL MESH

C HMESHI.FOR IS FOR HELIX ANGLE OF 6 DEGREES, ONLY

C ONE LINE MUST BE CHANGED FOR A DIFFERENT HELIX ANGLE!

C

DIMENSION A(240,23),SK(240,23),B(30),R(300)

B(1)=6.

B(2)=15.
DO 734 MN=I,2

AA=B(MN)*3.14159/180.
XLF=0.356139*TAN(AA)

DO ii K=800,I025

RK=K

X=0.10*(RK-I.)
C

C CLEAR ARRAYS

C

DO Iii J=i,23

DO 112 I=I,240

A(I,J)=0.

SK(I,J)=0.

112 CONTINUE

iii CONTINUE

C

C CALC LOCAL COORDINATE ARRAY

C

DO 113 J=i,23

DO 114 I=I,240
RI=I

RJ=J

A (I, J) =X- (RI-I.) *XLF- (RJ-I.) "11.25
114 CONTINUE

113 CONTINUE

C
C CALC SLICE STIFFNESS ARRAY

C

DO 115 J=i,23
DO 116 I=i,240

SK(I,J)=0.

IF(A(I,J) .LT. -9.771 ) GOTO 117

IF(A(I,J) .GT. 7.779 ) GOTO 117

THETA=A(I,J)

CALL LOA (S, THETA)

CALL COMPL (S, C)

SK(I,J) =i. / (C'24.)

C

C

C

C

C

C

THE 24 IN THE STATEMENT ABOVE IS NEEDED BECAUSE THE SUBROUTINE

COMPL CALCULATES COMPLIANCE FOR A 1/10TH SLICE AND NOW I AM

DOING CALCS FOR 1/240TH SLICE - COMPLIANCE WILL BE 24 TIMES GREATER!

WRITE (8,400) I, J, THETA, S, SK (I, J)

117 CONTINUE

116 CONTINUE

115 CONTINUE
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TK=0.

C 400 FORMAT(215,2FI0.5,EI4.4)

C

C LOOP TO CALC MESH STIFFNESS

C

C
119

118

C

C

C

C

C

C

c
333

Ii

227

c
734

C i00

300

200

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

= SUM OF SLICE STIFFNESS

DO 118 J=I,23

DO 119 I=1,240

TK=TK+SK (I, J)

WRITE(8,100) I,J,A(I,J),SK(I,J)
CONTINUE

CONTINUE

TKM=TK* 175. 118

IF MN .EQ

IF MN .EQ

IF MN .EQ

IF MN .EQ

IF MN .EQ

IF MN .EQ

IF MN .EQ
write (6,333)

WRITE (8,200)
format (2i5)

R(K-799) =TK
CONTINUE

RMAX=R (i)
RMIN=R (1 )

SUM=R (1 )
DO 227 KK=801,I025

SUM=SUM+R (KK-799 )

IF(R(KK-799) .GT. RMAX)

IF(R(KK-799) .LT. RMIN)
CONTINUE

SUM= SUM/225.

DIFF=RMAX-RMIN

PC=I00*DIFF/SUM

CR=I+7. 59758*TAN (AA)

WRITE (8,300) B (MN) ,CR, PC

CONTINUE

FORMAT (215, F10 .5, E14.4)

FORMAT (3F10 .4)

FORMAT (F10.5,2E14.4)

STOP

END

i) WRITE(8,200) X,TK,TKM

2) WRITE(9,200) X,TK,TKM

3) WRITE(10,200) X,TK,TKM

4) WRITE(II,200) X,TK,TKM

5) WRITE(12,200) X,TK,TKM

6) WRITE(13,200) X,TK,TKM

7) WRITE(14,200) X,TK,TKM

MN,K

X,TK,TKM

RMAX=R(KK-799)

RMIN=R(KK-799)

SUBROUTINE COMPL (S,C)

VERSION 1.0

TIM KRANTZ 2/26/92

FORTRAN SUBROUTINE TO CALCULATE TOOTH STIFFNESS

COMPLIANCE KNOWING CORNELL'S COMPLIANCE COEFFICIENTS

REVISIONS:

VERSION 1.0 TIM KRANTZ 2/26/92

REQUIRED INPUTS:
S=LOCATIONALONG LINE OF ACTION

RETURNS:

COMP = COMPLIANCE OF TOOTH PAIR
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

******************************************

** NOTE: **

** i) BY SETTING VALUES OF COEFFICIENTS **

** THE SUB IS SPECIFIC FOR A **

** PARTICULAR GEAR DESIGN. **

** 2) THE SUE IS NOT INTELLIGENT ABOUT **
** THE VALUE OF S. IF YOU ASK IT **

** TO CALCULATE FOR A VALUE OF S **

** THAT REPRESENTS THE GEAR TOOTH **

** PAIR NOT IN CONTACT, IT WILL **

** FAITHFULLY CALCULATE A COMPLIANCE **

** ANYHOW. **

******************************************

SUBROUTINE COMPL (S, COMP)

THE NEXT 5 FORTRAN STATEMENTS ARE SPECIFIC FOR A GIVEN DESIGN

WHERE A,B,C,D, C0 ARE COMPLIANCE COEFFICIENTS PER CORNELL

AND S0=LENGTH OF LINE OF ACTION OVER ANGLE OF APPROACH

$0=0.173406

A=0.-0.2021

B=0.5166

C=0.-.03206

D=0.1976
C0=0.2421E-05

X=S/S0

COMP=C0*(I+A*X+B*X*X+C*X*X*X+D*X*X*X*X)
RETURN

END

SUBROUTINE TO CALCULATE LINE OF ACTION

COORDINATE POSITION KNOWING THE LOCAL

ANGULAR COORDINATE THETA.

THIS SUBROUTINE IS FOR THE SPLIT TORQUE

HELICAL MESH GEOMETRY IN THE TRANSVERSE PLANE.

IT IS ASSUMED THAT BOTH S AND THETA ARE ZERO

AT THE PITCH POINT AND NEGATIVE ON THE ANGLE OF

APPROACH. ALSO IT IS ASSUMED THAT THETA IS IN DEGREES
AND IS WITHIN THE RANGE OF THE ANGLE OF APPROACH

THROUGH ANGLE OF RECESS

INPUTS : THETA IN DEGREES

OUTPUTS: S (INCHES)

SUBROUTINE LOA(S,THETA)
X=THETA*3.14159/180.

S=0.9448*(TAN(.349292+X)-.364227)

RETURN

END
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Appendix E

Calculations to Determine Input and Output Stiffnesses

and Inertias for Open-Loop Code

The data from the following tables were used in the calculations.

Torsional stiffness

Component Stiffness, K,

in.-Ib/rad

Bull gear web, I_

Torquemeter, I_

Bull gear shaft, K_

Compound shaft, K_

Pinion shaft, I_

High-speed shaft/coupling, K_

156.0xl(Y s

17.9

36.4

12.7

0.71

3.5

Mesh stiffness data

Component Stiffness, IL

lb/in.

Helical mesh, Ir_ 5.7×164

Spur mesh, I_ 8.5

Inertia data

Component Inertia, I,
Ibm-in. 2

Torquemeter, I_

Drivemotor,I_
Bull gear, lbt

Compound shaft, I_

Helical pinion, I_p

High-speed shaft/coupling, Iu,

201

4100

466

11

1

35

Total gear ratio of gearbox, GR ... 25.26

Base radius, in.

Bull gear, 1_ ............... 7.975

Spur pinion, P_ ............. 1.224

Helical gear, Rq ............. 0.944

Helical pinion, R_ ........... 3.658
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Apply the first rule: the kinetic energy of the output and input inertias of the analytical model should equal the

kinetic energy of all the components not directly represented in the analytical model KE. Let 0 represent the

rotational speed of the component. Then

1 1 i_(0_)2KE = I_(0_) 2 + _ I¢(0bg) 2 + _.

I1 1 1 ibp(0bp)2 + 1 ibs(0_)2+ 2 In(0n) 2 + ._.

since

0bg = 0_ = 0_

Ohp -- Oh$ _-_ 0dl n " GR

Then

or

1 (Iam+ Ibg + _)0dm + 2 + (Ihp + I )(GR)20 2-- In _ dm
K.E= 2 R_

(R.)2
t,R )

Applying the data

SO

since 0i = 0o • GR and 0a_

KE = 02 . (14 350 lbm-in. 2)

+ (Ihp + I_) • (GR) 2

KE = 02" (14 350)= 1[Io(0o)2+ Ii(0i) 2]

Go,

l IIo02o + Ii " GR 2' 02}KE = 020 • 14 350 = _.

Thus, the result of the first rule is

28 700 = Io + I i • (25.26) 2
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Applythe second rule: the ratio of the input inertia to the output inertia should equal the ratio of the stiffnesses

of the two branches of the parallel path to the drive motor.

Path number 1 is the output shaft of the test gearbox to the drive motor:

KI : 1 + _ + = 9.02x10 _ in.-lb/rad

Path number 2 is the input shaft of the test gearbox (through the slave gearbox) to the drive motor:

U
Let K z = --_

where U is the unit torque at the test box pinion and D is the test box pinion rotation due to the deflection of all

components in path 2.

Let

D = Dw + D_ + D= + D R + D r + D_ +Dm

where Dw is the pinion rotation due to the deflection of K_, and D_ is the pinion rotation due to the deflection

of K_, etc.

Then

1
D =m

r_ K
ps

1
Dl_ n -

2
1

D -

2K

D
Srn

1

(GR) z
D w -

K,,
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Substituting the numeric values,

From the first rule,

From the second rule,

Ks = 1.18x105 in.-lb/rad

28 700 = Io + Ii(25.26) 2

Io Ii Ki 9.02x l&
- or I = I i --

K l K2 ° "-_ 1.18x105

SO

28 700 -
9.02x106

I + (25.26) 21l
1.18x105 '

I i = 40.2 lbm-in. 2

I = 3070 lbm-in. 2
o
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